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1. Introduction

In recent years increasingly complex wing plenforms, which are
efficient over a large flight envelope, are being used in the alrcraft
industry. An efficient high-subsonic or supersonic cruise aircraft
rust te designed to work efficiently even for off-design performance
points, such as, landing and take—off. One way of designing such en
gircreft is to have fully attached flow et cruise and controlled
leading-edge separation at landing- and take-off-conditions (ref. 1).
A significant amount of vortex lift can be generated at high eangles
of attack by leading-edge vortex flow. lienderson (ref. 1) pointed
out that at high engles of attack highly swept-back wings having sharp .
leading-edges have low amcunt of leading-edge suction (essentially
zero) and generate large smount of vortex lift. However, the
leading-edge suction increases as the sweep is decreased or leading-
edge radii ﬁre jpcreased. The structural considerstions restrict the
leading-edges to be of finite radii. In these cases the 1lift deta
lies between potential and potential plus vortex estimates (zero
suction). At present, tﬁere exists nc theoretical method which can
vredict eerodynamic chaerecteristics of wings having partial leading-
edge suction and vortex flow as mentioned above. A theoretical method
is presented here to predict serodynamic characteristics of wings

under such ccnditions.
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A theoretical methcd for cases with non-zero leeding-edge suction
snd partiel leading-edge separation should also be applicable to cases
with complete leading-edge separation. Due to lack of data with rertial
leading-edge separation, the present method hes bteen extensively
ccmpared with other theoretical methods and available data conly for
ceses with complete leading-edge sepereticn. Thus, a survey of
litereture on completely separsated leading-edge vortex flow seems
pertinernt.

Lecendre (rer. 2) was the first one who attemnted to solve the
leading-edse separation rroblem. He assumed that rolled up vortex
sheets over the wing can be replaced by a pair of concentrated vortices
(fig. 1). 1In this model the flow tangency boundary condition over the
ving was satisfied aslong with the leading-edge Kutta condition. The
flow was assumed to be cenical so that conformal mapnine could be used.
Upon the instigation by Adams (ref. 3), Legendre (ref. L) revised his
rcdel. He reported that in his first model he had sssumed a cut
Jcining the two vortices. In enother form cof his model, Legendre
ircluded a cut betweer the vortices and their respective leading-edges
tc eccount for the feeding sheets. Adams pointed out that in *the
rirst medel cf Levendre the 1ift was rmltivalued because the rezion
was nc Jonger simply ccnnected and in the seccnd one the pressure
difference was allowed across the. cheet. Based on the suggestions of
Edwards (ref. 5), Erown and Micheel (ref. €) modified Legendre's
slerder tecdy model ty using feeding cuts, which ccnnected the Zine

vertices tc the wing leading-edges (fig. 2). This vortex system of



concentrated line vortex and feeding cuts was reguired to satisfy
the force free condition. The leading-edge Kutte condition and
flow tengency bcurdary conditiorn on the wing were also satisfied.
Mangler and Smith (ref. T7) proposed a somewhat more reelistic rodel
than that of Brown and Michael, but still used slender tody theory
in their investigsetion. They used a ccntinucus model of the separated
vcrtex sheet along with & concentreted core (fig. 2). The share and
strength of the vortex sheet and the concentrated line vortex were
determined ty setisfying the flow tangency condition on the wing and
the pressure continuity condition sacross the seperated vortex sheet.
Later, Smith (ref. 8) used segmented feeding vortex sheet witk
considereble improvement in numerical procedure (rig. 4), largely due
tc mdvent of greater computing power. The abcve model was modified
further for thick wings (Smith, ref. ¢). The main shkertcoming of all
thece mcdels described so far is the essumption of conical flow.
Gersten (ref. 1C) extended Bollay's vortex model (ref. 11), which
was for rectangular wings with wing tip separation, tc erbitrarily
shaped wings of small aspect ratio with leading-edge serareticn
(fig. 5). lIn this model the vortices came off wing edges at en engle
a/2 1o the wing plane. The wing was replaced by infinitesinal lifting
elements and the strength of vortices was assumed to vary elong the
span. £t this point the flow tangency condition on the wing was
satisfied tc find the wing characteristics. Garner and Lehrian (ref.
12) followed Gersten's approach by using Multhopp's lifting

surface theory (ref. 12) to represent the wing. Both of these models
18



are very crude and give only total characteristics of the wing; i.e.,
pressure distributions are not calculated.

Sacks, et al (ref. 1L) essumed aserodynamric characteristics (1ift
and pitching momert) to be composed of two components - the linear
ancd norn-linear components. The linear component was calculated by
using the integrel method of Lawrence (ref. 15), while the ncn-linear
corponent was celculated by assuming that vortex pairs were shed just
outside the wing leading-edge with shedding rate determined by either
an empiricel method or slender wing theory. The location of each
vertex peir was determined ty satisfying the force free condition at
the vortices.

Nangie and liencock (ref. 1€) extended Brown and Micheel's model
(ref. 6) to ron-slender wings. In their model the wing planform was
represented by bourd- and trailing-vorticity distributions. The
weke behind the trailing-edge was free to mcove outbosard ard the
ieading-edge separetion was represented by twoc isclated vortices,
which were conrected to the leading-edge by cuts (as in Brecwn and
Micheel ). The Kutta condition was satisfied elong the leading- and
trailing-edges and the flow tangency condition was satisfied on the
wving surface. Zero force ccndition was satisfied on the isolated
vortices and the cuts at selected collocation points. /,lthough this"
methcd was not restiricted to slender winge, the lesding-edge flow

model. was crude.



Polhamus (ref. 17 and 18) used leading-edge suction analogy to
predict 1lift coefficients for various simple planforms, such as,
arrow-, diamond- and delta-wings. It wes essumed that when the
complete flow reesttachment cccurs inboard of the lesding-edge vortices,
the totel lift equals the sum of the potential and vortex lift,

These components of 1lift were calculated by using a modified form of
Multhopp's lifting surface theory (ref. 19). The vortex lift was
assuced to be equal in magnitude to the potentisl flow leading-edge
suction forcé lost due‘tc separation. In its original form this method
did not celculate the locel distribution of lift and so the pitching
moments were not predicted. Snyder and Lamer (ref. 20) used this
method to predict the longitudinal load distribution and pitcking
moment for delta wings.

Mook and Maddox (ref. 21) modeled the leading-edge vortex system
by finite vortex elements coming off the leading-edge (fig. 6). This
network of vortex elements was superimpcsed on the vortex-lattice
used by Giesing, et al (ref. 22). The solution is obtained in an
iterative marner by satisfying the flow tangency boundary corndition on
the wing surface, approximately satisfying leading- and treiling-edge
Kutta condifions, and satisfying force free conditions on the vortex

_elements over the wing surface. The force free condition was not
satisfied on the wake behind the trailiég-edge. Kandil, et al (ref. 23)
modeled the flow in & manner similar to that of Mock and Maddox
(ref. 21) and extended it to wing-tip seperation also. Kandil, et el

followed Belotserkovekii (ref. 24) for the representation of the

ORIGINAL PAGE 18
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wing surfece. In this model the bound elements of the vortex-lattice
were unswept, and the wake behind the trailing-edge and the vortex
elements coming from wing-tip were force free, Apparently, this
methoc hes teen restricted tec an angle of attack of 2C degrees (ref.
25). Kandil, et al (ref. 2€) extended their model to calculete the
locetion and strength of a ccncentrated ccre, which they also used
for convergence criteria. Rehtach (ref. 27) also followed
Belotserkovskii to model wing-tip separation and the approach was
similar to thut of Kerdil, et el (ref. 23). Eowever, he solved the
leading-edge separstion problenm differently (ref. 28). The process

was started by finding & converged solution for a rectangular wing

(fig. 7). The leading-edge span of the rectangular wing was decreased by
4 swall amount, while the trailing-edge span was kept constant. A new
cenverged scluticn for this wing wes ct*ained. This process was
rereated until the plaenform reduced to & delte wing. The deficiency
of these methods is that the leeding-edge Kutta condition is crly
epproxicately satisfied. The iteretion precess of Retbtach could alsoc
Ye guite time consuming.

Nathmer (ref. 29) presented twe models of lealding-edge separation;

o =

< - - . 3 e
Te Tixed wakxe model and the free waxke molel (72 8

). In voth models

ug}

the wing was reoresented by panels with constant strength doublet distri-
tution, beiny eguivalent to closed vertex filaments on the boundary of
the panels. In the fixed wake model the separated sheet war modeled by

placing a serier of planar boxes along the leading-edre which extended



(82N

to the vortex core predicted analytically by 3Browr and Michael (ref.
The doublet strengths were obtained by satisfying flow tangency
boundary ccnditions only. In the free wske model the separated
vertex sheet was represented by discrete vortices ettached to the
ieading-edge. These vertices were aligred along the locel velocity
vector to te fcrce free. The wake behind the trailing-edge was force
free only to a certain extent. The fixed weke model is tco crude,
whereas no definite convergence criteris hes been establishked for

the free wake rmodel.

The rost sophisticated and reelistic model of 211 leading-edge
sereration models has been due to Brune, et al (ret. 3C). In this
rodel the wing end the separated vertex sheet were represented by
riecewise continuous doublet distritutions. The separated vertex
sheet wae ccnnected to a concentreted ccre by e centirucus fed sheet
(fig. 9). The solution was obtainec in an iteretive marner by
setisfying the Kutte cordéition elcong all edges, flow tangency toundary
condition on the wing, ard the force free conditior on the separatec
vertex sheet and vwake behind the trailing-edge. This mcdel has elso
teen exterded fc thick end cerbered wings. The cdrawbacks of this
Lodel are thet it cannot predict lift correctly et small epgles of
atteck for moderate to low aspect retio wings, takes too much
computer time to get a converged solutior and needs large computer

riepory SspRce.
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All rethods menticned abeve celculate only the wing characteris-
tics for complete loss of leeding-edge suction. A method is
ceveloped here for pertial leeding-edge flow separation with non-zero
leading-edge suction. The wing boundary condition is formulated by
the Quasi Vortex Lettice method (QVLM) of Len (ref. 31). The adv;ntage
of this method is thst the leadirg-edge toundary condition car be
exactly setisfied., Thre leading-edge separated vortices are
represented by discrete free vortex elements which are aligred with the
lccal velocity vector at their rid-points to satisfy tke force free
condition. The wake tehind the trailing~edge is also force free. The
flow tangency boundary condition is satisfied on the wing, including
the leading- an¢ treiling-edges. Due to the non-linear neture of the
Froblem, the protlem is solved in an iteretive menner. Due tc non-
availebility of any data with partiel leading-edge serparetion, the
Letkod will be compared crly with other mettods (ref. 32 end 33) and
experirertal dete (ref. 2% trru 40) for corplete leading-edge
separaticn. The basic assumption in the present theory is that the
Prandtl-Clauert equation is applicable. The thickness ard fuselage
effects are ignored.

Chaepter 2 presents tre ‘leoretical methogd. In Cheyter 2,
rumerical results ere presented and discussed. Conclusions and

recommendations are made in Chapter k.



2. Theoretical Method

2.1 Problem Definition

In steady symmetric flight at a high angle of attack, the flow
over a thin low aspect ratio highly sweptback wing separates along
the leeding-edge and the tips. In the following, only delta wings
will be considered. The wing can be represented by a bound vortex
sheet, across which exists a pressure difference, and the separated
flow elong leeding-edges by force free vortex sheets, across which
there is no pressure difference. 1In the present method, the Quasi-
Vortex-Lattice method (ref. 31) is used to simplify the induced
velocity expressions due to the tound vortex sheet and discrete force
free vortex elements for separatec vertex sheets.

The following boundary conditions are imposed on the flow model:

&. The flow must be tangentiml to the wirng cambter surface.

b. The leading~-edge boundary condition and trailing-edge Kutte

condition are to be satisfied.

c. The vortex elements over the wing and weke tehind the

trailing-edge are force free.

vortices and free vortices, and the locations of the free vortex
elements are urknown. Thus, the problem is solved by en iterative

method.

AGE 15
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2.2 Mcdel Geometry

The origin of the rectengular coordinste system ic at the wing
"apex. 'The wing lies in the x-y plane and the x-axis is teken slong the
ving center-line. The wing span is given bty T &and the surface area

vy E.

2.2.1 Virg Geometry

The locetion of bound- and trailing-vortex elements for e +ypicel
cese are shown in figure 10, a detailed cdescrirticn of which is given
in section 2.3. The x-loceticn of btound elemerts ic given ty the
ccsine law énd is illustrated in figure 10.

2i - 1

—~

x, = x, + = (2 - Ces!
c

where % is the leading-edge x-coordinate, ¢ is the chord end N is
the rumber of bound elemenis in a chcrawise directicn., The spsnwise
location of trailing elements is given ty,

b . 2j - 1 .
y. =T (1 - Cos(—izﬁ—- T, (

~

2]

n
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where b 1is the span and M 1is the number of legs of trailing
vorticity, which is one higher than the pumber of spanwise strips of

tound elements. The lccations of contrcl points sre given by, -

C
L Tk
cpk QIJ- + ) (1 - COS(N )) Py (2-3)

x = 0,1,2,~--N

prj = %-(l - Cos(ﬁi)) , (2.4)

J=1,2,—=(M~-1)

where X, and ¢ are the leading-edge x-cocrdinate eand chord at

3 J
ycpj respectively.

2.2.2 Leading-Edge Vortex System Geormetry

The leading-edge vortex system is superimposed on the regular
quasi-vortex-lattice grid. A typicel vortex element is shown by
points A through J in figure 11. These points are connected by &
series of short straight segments. The initial locetion of these
segments is shown by dashed lines and f&nal location by solid lines.

These segments have the following characteristics:

ORIGINAL PAGE IS
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Points A through E lie &along a wing trailing vortex element.
Initially point A is one root chord away from the treiling-
edge in the downstream direction and the line segments
between A and D are perallel tc the axis of symmetry. The
line segments between points A and B are of equal length.

In the final converged position these segments sre aligned
in the directicn c¢f the locel velocity vectcr. The segrents
B-C and C-D are 0.1 Cg 1long. B-C is allowed tc move only
in the verticel direction whereas C-D is fixed in the wing
plane because flow is tengentiel tc the trailing-edge.
Segment [-L is also fixed in the wing plane.

Points E, F, G and E also lie in the wing plane. The location
of segment I-F is ahead of the wing first tound element and

is giver by,

c
Xp = X, o+ E§~(l - COS(ETEEI—IT)) (2.58)
E
r i
Xp = X, +==(1- Cos(ETﬁr:-:T)) (2.5b)
- z 2

where the subscripts E and F refer to the pointe under
consideration. The above two equations are similar to
equation (2.1). It is to be noted that segment E-F is
located at the first bcund element for & grid of (N + 1)
bound elements in & chordwise c¢irection. The segrents F-G

and G-} are of the same length and point G lies cn the
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leading-edge. The segment G-H is fixed in the wing plane
due to the leasding-edge boundary condition.

The initial locsation-of point I is given by,

x; = Xp | (2.6a)
y; = ¥y (2.6t)
2, = 0.1 Cp ten(22.5 - 0.5a) for o< 15° (2.6c)
2, = 0.1 Cp tan @ for o> 15° (2.6d)

where CR is the root chord and o is the angle of attack.

'Initielly point J is one roct chord away from the trailing-edge.

The segments between point I end J are of equel length and

lie in a plene parallel to x-z plane. These segments are
aﬁproximately at a height of 0.1 CR above the wing plane (see
Chepter 2.6). In the finel converged position all the segments
between points H ard J are aligned in the direction of the
local velocity vector.

The semi-infinite segments from points A to infinity and J tc
infinity are straight end are parallel tc the undisturbed

free~stream direction.
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2.3 Induced Velocity Due tc Wing

In the quasi-vortex-lattice method (ref. 31), for the purpose of
satisfying wing boundary (tangency)“condition, the continuous vortex
distribution over the wing Is replaced by a quesi-continuous one,
being continuous chordwise but stepwise constant in the spanwise
directicn. Thus, the wirng surfece can be divided into.a number c?
vertex strips with the assccieted treiling vortices (fig. 1C). Irn ery
strip, ccnsider a vortex element <ydx with an arbitrary direction £

(fig. 12). The induced velccity due tc all bound elements in ith

strip is given by (see Appendix A),

end due tc the esscciated trailing vecrtices by (ref. 21),

2 x / (R, - B) x af
-> \n, - X
AR Y 77, —— ax (2.8)
2 g \ Ry

The trensformation, x' = X, + E;Il (1 - Cos 8), reduces equaticens

(2.7) and (2.8) to,
2
¢ (B = B 77 (o) e sin 6 a8 (2.9)
i
1

ernd

- -+ Bzc(::) m >

q; (R) = =4 I, G,(8) y(8) Sin © a8 (2.10)
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where,
x 2, .
-
G () = 52— {5 - 2. b
lat x £° ] e
- + +
N (Ri - R} x ag
02(9) =/, =
x 52
B
and c(y) = X, - X, o a, T, etc. are defined in the List of oylbo.s.

The totel induced velocity due to the ith strip of vortex distribution

is given by,

-

2 .
> _ B 0512 3 184 .
q (R) = ===/, G (e) v(8) Sin & a8
, Eeln) ST &1(8) y(e) Sin 6 a8
8m o 2 Y
- ﬁfsixl-f“ ¢"(e) y(8) Sin € a8 (2.11)
8‘" o] 2 Y . 7)
where the first term is due to bound elements, second due to left leg
of trailing elements and third due tc the right leg of treiling elements.

The ebove integrals are reduced to finite sums through the midpoint

trapezoidal rule (see ref. 31):

-+ > 2 N -+ -
o (R) = &< I (6. + G, -G )y, Sin 8 (2.12)
* N k
vhere 6 = 2k2; 1) & and locations of bound elements are given by,
PAGE 18
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X, =x, + clgk (2.13e)

X, =x, + c2£k : (2.13t)

2k -1 -

- L _
£ =3 [1 - Cos( N

)]’ k = 192:-"°3N (2.13C)

Xp = the leading edge x-ccordinate at ¥y (left leg.

1l

X, = the leading edge x-coordinate at Y, (right leg)
2

¢, = chord length at Yy

Cy = chord length at Yy

. The control points in the chordwise direction ere chosen suck that,
(1 - Cos £5), i = 1,2,---N (2.14)

where Xy is the leading edge x-coordinate on the choré ¢ through the

control point. The spanwise location of trailing vortices is given by,
(1 = Cos{=5— 7)), § = 1,2,-==l (2.15)
and control points by,

v, = 2= os(E)), i = 1,2,mmm(M-1) (2.16)

where b 1is the spam and M is the totel number of traeiling vortices

which is one more than spanwise strips. Tke geometry associated with



1T

equations (2.13) - (2.16) is based cn the semi-circle method and is

illustrated in figure 10.

Thus, induced velocity due to all vortex strips of the wing can be

written sas,

AR) = £ o (R) (2.17)
i=1

2.4 Induced Velocity Due to Leading-Ldge Vortex System

The leading-edge vortex system, as describedé irn Chapter 2.2.Z,
consists of "M-1" elements. CEach element mey heve different number of
srall vortex segments. Assume that ith set has L small segments.
The induced velocity et a point {(x,y,z) due to jth segment of ith

element is given by (Appendix A),

2
Br g -" +l
Vi(ii):lml*“i{f’, -2 - T (2.18)
J PSR LN L P B P
where
-+ -+ -> ->
R=xi+ y! + zk
- N - ->
a=(x, -xJ)i+ (y, -y)J+ (2, -2k
J J J
t = -x)1 4y -yi (2 -2k
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al = (xJ -1+ B(yJ - y)} + B(zJ - 2)k
- + - -+
b = (xJ+l-x)1+8(yj+l—y).} +B(ZJ+1_Z)R

o+
"

(x5, = %)+ By, - Y, 3+ Blzy,y -2 F

[

—
1]

Vortex strength cf itlL set of segments
The sutscripts J and J+1 correspond to the ernd points of Jjth
segment.

Now the induced velocity due to ith element can be written as,

o .
V.R)= £ V. () (2.19)

2.5 Boundary Conditions

The two basic boundary conditions to be sstisfied in the model sre,
&. Thefflow must be tangential to the wing camber surface.
b. The vortex elements above the wing and ir the wake behind

the trailing-edge must be force free,

ORIGINAL PAGE IS
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2.5.1 Formulation Of Wing Boundary Condition

The bound elements and the correspording control points of the
wing surface are numbered from the leading-edge to the treiling-edge
end from the roct to the tip. Thus, there are Na = N(M - 1) bound
elements and corresponding control points (see Chapter 2.2.1).
Similarly, tne vortex elements and the corresponding control points
in the lesiing-edge vortex syster are numbered from the root to the
tip. There are Nb = (M - 1) leading-edge vortex elements being
equal tc the pumber of wing vortex strips. Thus, there must be
He = Ne + Nb control points on the wing surface. The flow tangency

conditicn can be written sas,

( )
(&) - sina Yo
ax ' 4 .
N i b S - .
(a1 O} o+ DBl (1) { - * (2.21)
Smm— —Q
NexNa Nexl NexNb  Nbxl o, * ( )k sie @ ﬁ?
- Ne x 1 J
where AiJ is the induced downwash at itk control point of wing

due to & unit horseshoe vortex density at J; Bik the induced

dowriwash at ith control point due to kth leading-edge vortei element

of unit strength; Yj the vortex density~of the Jth bound element;

I‘k the strength cf kth leading-edge vortex element, (%idithe camber slope
at the ith control poirt and o the angle of attack. According to
equations (52) and (53) of ref. 31, the leading-edge thrust coefficient

is related to the normalwash on the leading edge by the following
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eguation:
&z

azk.= induced normelwash - (dx .

+ Sin a (2.22)

which leads to the last exrression on the right hand side of equation

(c.21) In the etove expression, &y is defined as:
S5 [ 2 S, Cos A 1/2

g, =N /tan‘A + Y | p——— (2.23)
2 ﬂ\/l - Mi Cos“A

N = Number of chordwise vortex elements

A = Leeding-edge sweep angle

M, = Free stream Mack number

£ = N1 -l

¢y = Secticnel leeding-edge thrust coefficient of the Xth strip
k B

For ccmplete leecirg-edge seraration cases the secticnel leading-ecge

suction is zero ernd sc is aP
k

¢.5.2 Formulatior Of Force Free Condition Cf Free Elerents

lagat

‘e vortex segments mbove the wing surface end the wake are to te
eiigned ir the directior of lccal velocity vecter calculeted at their
mid-points. Consider ith segment of & vortex element. Tne

(

X 410 Y410 %54, )+ Assume that the velocity et the mid-pcint of this

segrent at e given iterative ster is given by,



where

and

21

- e -+
i + v] + wk)

(i + 1)th end point will ve,

e = x. + L A
i+l T
N
v
Yie, TV YU bs
N
- ¥
R

Before equations (2.21) are used, the following points should bte

(2.24a)

(2.2kv)

(2.2k4c)

considered:
a. The.length of each segment is to be preserved.
b. The free vortex segments above the wing should nct come toc
close to the wing surface to avoid numerical difficulty
in the present inviscid theory.
¢. The adjustment of the locetion cf each segment to satisfy the

force free condition should be such that it does not result

in numerical fluctuations (see Chapter 2.6).

OF RoOR QUALITY
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Based on the etove consideration, equetions (2.24) wiil be modified
as follows.

Corsider the same ith segment. If this segment mcves a-percent
only according to the velocity computed at its mid-point, then

equetions (2.24) cen be modified to be,

av

ty. = =—=tLs + (1 - gy, . - ., (2.25a)
K U 1+ i
aw
= e/, + - -
bz 5 bs + (1 a)(zi+l zi) (2.25b)
A =\/As2 - Ay2 - 82° ~ (2.25¢)
Xy N N .
It follows that,
Xign S X ¥ AxN (2.26a)
I
Y = -+ r al
Fiey, ¥y byy. (2.26b)
o = s nge)
bl‘*l, Zl + t_\ZN (c.c6c,
N
Let Zmin be tle minimum verticel distence ary vortex segment is
gllowed tc come close to the wing surfoce. If Z,,- is less than

N

Z . s it is then set equel tc Z . and Az is recalculsated by using,
mirn min N

Az, = Z -z, (2.27)
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i+l )’

This value of AzN is used to celculate x,
N

2.6 Solution Procedure

The basic unknowns cf the problem are the bound vortex density
on the wing, end the strengths and the locations of the e.ements of
the lemding-edge vortex system and the wake. The problem is non-
linear tecause the locations of the leading-edge vortex system and
trne wake are unknown & priori. Therefore, the problem will be solved
by the iterative process described below;

a. Prescribe the vortex lattice for the wing surface, and the

initiel locations of the free elements over the wing and
in the wake.

b. By satisfying the wing boundary condition, i.e. equation
(2.21), obtain the bound vortex density of the wing and the
strengths of free elements.

c. Calculate all the aerodynamic characteristics.

d. Calculate the forces acting on the free elements cver the
wing surface.

e. Adjust the free elements of the leading-edge vortex system
and the wake in the locel velccity vecter direction, as
described in Chapter 2.5.2.

f. Repest steps b through e untii a converged solution is
obtained. |

The initial locations of the free vortex elements are assumed by
letting thém leave the lesding-edge in the undisturbed free-stream

direction up-to a height of about ter percent cf the root chord

OF POOR QUAH'FV§



2L

beyand which the elements are parallel to the wing plane. Initielly,
all fhe elements of the wake lie in the plane of the wing. In the
iteration process, the fcrce free condition is satisfied on the free
elerents from the root to the tip in the down-stream direction. A
similar approach hes been used by Butler and Hancock (ref. 41) with
success for the wake problem. The elerents over tne wing are adjusted
tefore the elemerts of the wake. In the first teration the segments
over the wing are moved 1CC percent according tc the velceity computed
at their mid-pcinte. This movement is gradusliy reduced in steps of
90, 6C anc 7S percent in the next three iteraticns, after which it
remains et 75 perceﬁt (see equations (2.25) and (Z.2€)). The segments
ir the wake are rcoved cnly 50 percent in eech iteratién. Thus, exact
force free condition is rnct enfofced because whenever the Iree elements
come close to each cther they induce unreasorably lerge velocities
because viscous effects are rnot included in the present theory. These
large velocities ircrease the forces cn the elements ard irduce
fluctuations in their lcca£ions.

The solution is assumed tc have converged if ir two consecutive
iterstions the difference betveen the totel strengths of leading-edge
free vortex elements is less than cne percent ena the absolute force
acting on the free elements is in the neighborhccd cf & minimum. Thus,
an exect force free condition is not enforced as discussed in the

previous paragraph.
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2.7 Aerodynamic Cheracteristics

The expressions for the evaluation of the pressure distribution
are derived in Appendix B. They are obtained by applying the Kutta-
Joukowski tlrecrem to the vortex system on the wing.

The sectiornal normal force coefficient of Jth strip is given by
chordwise integration of the differential pressure coefficient:

1 xtj
c ==/ AC_ dx (2.28)
X P

n c

where Xy ana Xy are the leading and traeiling edge x-coordinates

J J
of the chord passing through the control points of the Jth strip and

c is the chord length. The transformation,

J

n Lh()

(1 - Cos 8) (2.29)

reduces equatior (2.28) to:

Q
i

=1 /T aAc sin 6 a8
¢ P

N+1
ETFTL«"—IT I 4c Sin 8, (2.30)
k=1 Pk

"t

and

_ {2k -1 - )
6, = LETE—:-%T m, k =1,2,—=-(N+1)
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where the midpoint trapezoidal rule has been used to reduce the
integrel to a finite sum. Similarly, the sectional ritching moment

coefficient for the jth strip about the y-axis ie given by,

X

: t
c  =- —gg'fx J ACP X dx
T % ‘
J 3¢ F
N+1 c
. T Ioac_(x, + 51 (1 - cos &, ))sin & (2.31)

2C(N + 1) k=1 Pk *j

vhere C is the mean geometric chord.
According to equetions (52) and (52) of ref. 21, the sectional

leading edge thrust coefficient is given by:

TT\/l —‘Mi CoseA {w' - ((
- J

tJ 2N2

c
Cos A{1 - M

where M_ is the free streer Mach number, A\ the sweep angle of the

Ny d . X
leacing-edge, and w'! and (-E‘ ere the induced normalwash and slcge

J dx 3

of the wing surface at the leeding-edge.
The normel force coefficient is obteined ty integreting the

sectional ncrmal force coefficient across the span:

b
P
Cy S§1 ¢, ¢ dy (2.33)
J_b
-2

where b 1is the span and S the wing area. By the transformatiorn,
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y =— (1 - Cos ¢) (2.34)

=lo

equation (B.21) cen be reduced to,

b T .
Cy = 35 fo c, © Sin ¢ d¢
M-1
~ bTr . . -~ -
= Som E cn.ci Sirn ¢i (.35
i=l i
¢. = i m, i=1,2,--=(M=1)
i M ’ | Al ‘

where (M-1) is the total number of spanwise strirs and the regular
trapezoidal rule has been used.

Similarly the pitching moment and leading-edge thrust coefficients

are given by,

-1

CM = o E c . < Sin ¢i (2.3€)

ORIGINAL PAGE IS i= 1
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C .Z c, ¢; Sin ¢i
i=1l i
The pormal force coefficient and leading-edge thrust coefficient
can be resolved in the free stream directicn and perpendicular to it

as shown in figure 13 to obtain the lift coefficiert and the induced

drag coefficient:



C, =Cy Cos ¢ (2.38a)
a
= cq ;
CD CN »lin Q (2.38b)
&
= a2 \
CL CT Sir o (2.38¢c;
a
C. =0C. Ccs . PRI
Db i

where «a 1is the angle of attack. Eguetions (2.38) can now be used to

obtain the total lift and induced drag coefficients:

¢, =C.Cosa+CSira (2.39)

.
]

no

C =C, Sin a - C, Cos ¢ (2.L0}

L, 3
i

wren the flow along the lesding-edge is corpletely separated, the

~eecing—-edge thrust coefficient is zerc.



3. TResults and Discussion

It has been found during the investigation that the calculated
induced velccities due to the wing become inaccurate if the control
point of a free vortex segment, where induced velccities are to be
eveluated, is any closer tc the wing then twenty percent of the locel
chord. On the other hand, the induced velocities calculated abcve the
control points of the wing show s smooth trend. Therefcre, if a free
vortex segment is closer than twenty percent of the locel chord, the
induced velocities at its control point, i.e. mid point due to the
wing, ere cbteined by linear interpolation of the velocities calculated
above four wing control points among which the point is located.

It has also been found numerically that the merod;memic
characteristics depended on the number of spanwise strips, i.e. M of
equation (2.2). Therefore, & parametric study has been made to find
a relation between the aspect ratio and the rumber of spanwise strips
for reasonably accurate results (Fig. 14). It is to be noted that
as the aspect retio is decreased, the number of spanwise strips hes
to be increased. This is due to the fect that the spanwise varistion
of eerodynemic characteristics, such as pressure coefficient and thrust
coefficient, is large for smell aspect”ratio wings. This study was
performed by matching the 1lift coefficiente obtaired by using tle
present method to those obtained by using suction analogy (ref. 32)

at one angle of attack.



The free elements of the leading-edge vortex system heve been
restricted nct to come any closer than a minimum specified height to

the wing surface, which is given empirically by,

[a}
1]

s}
nin = 0+1 Cp tan(22.5 - 0.5a) for a < 15 (2.41e)

8]
n

ip = 0.1 Cg tana for a > 15° (2.u1D)
where CR is the root chord and a the angle of attack. This
restriction was needed because whenever the free elements are close to
the wing surface, they induce large velocities on the wing and vice
versa, which mekes the frée elerents fluctuate (unstable). In the
real flow, at small sngies of attack, the leading-edge vortex systeﬁ
is weak and diffused. The present method does not account for
diffused vortices end so the effect of the free vortices is artifically
reduced by increasing Zmin as the angle of attack is decreased telow
15 degrees.

All the results have been calculated by using six chordwise
vortex elements on the wing; i.e., N of equation (2.1) is 6, and the
length of the free vortex segments being 15 percent of the root chord.
The effect of the number of chordwise vortex elements and the lengtk
of the free vortex segments is insignificant.

A computer prograr has been developed for the present mcdel with
the ebove restrictions (rer. 42). It has been used to generete

aerodynexic cherecteristics for flat delta wings of severel aspect

ORIGINAL PAGE IS
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ratios. These predicted results are compared with the availaltle
experirental date and the results by the suction enslogy (ref. 32),
Kandil's model (ref. 23) and Brune's model (ref. 20) as obtained by
Kuhlmen (ref. 32). The lift- and pitching moment-ccefficients are
plotted asgsinst angle of attack for complete leading-edge seraraticn
cases, i.e. zerc leading-edge thrust, in figures 15 threugh 19. 1In
general the agreement for the 1lift coefficient btetween the present
rethod, suction analcgy (ref. 32), Brune's model (ref. 30) end
experimental date is quite good. The present method usually over-
prredicts the 1ift coefficient at small angles of attack whereas
Brune's model (ref. 30) underpredicts it. For the wing of aspect
retio 0.7053, the present method becomes less accurate ai high engles
of attack (figure 15). This could be due to the large rate of chrange of
pressure coefficiernts in spanwise cirections at large ang;és of attack
for smell aspect retio wings. A better égreement could be obteined
bty increasing the number of spanwise strips for small aspect ratio
wings at large angles of atteck. An excellent agreement is seen fcr
the pitching moment coefficients calculated by using thre present
nethcd and the experimertal date in figures 16 and 17. The suction

enalogy can not predict accurate pitching moment ccoefficient trecause

-{t does not calculate the surfece load distribution. Although

surface load distribution is predicted in Brune's model (ref. 30),
the pitching moment coefficients are not predicted accurately. The
pitching moment coefficients predicted by Kandil's model (ref. 25) for

aspect ratio 2.0 wing are in a better agrucucit with experimental data
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than eny other methoa, but the model is restricted up to a 20 degree
engle of attack only. The effect of Mach number on the 1lift- and
pitching moment coefficients at different angles of attack for aspect
ratic 1.5 wing is shown in figure 20 and the trend for the 1lift
coefficient agrees with that predicted by the suction analogy.

The pressure distribution for three deltsa wings at several angles
of sttack and constant x-locations are shown in figures 21 through 23.
In general the pressure peak obtained by using the present method is
lower than the experimentsl value and is shifted tcwards the root
chord. Figure 22 shows the only comparisor with the theoretical methcd
of Brune (ref. 33) and a sharp peak is visible it 3rune's model.

The reason for the peek being lcwer in the rresent model is thaet each
free vortex acts as a concentrated core by itself whereas 3rune's
model has e separated vortex sheet with e concentrated core st its end.
Therefore, ir Brune's model a sharp pressure peak will be rresent,
wrereas in the present model the pressure distribution will be more
diffused.

Thus far it hLas been shcwn that the present codel gives reascnatle
results for completely separated flcw along the leading—~edge. The
thecretical effect cf partial leading-edge separation on the aero-
dynaric characteristics will be shown next. Figuge 2L shows the
effect of varying the emount of the leading~edge sucticn lost on the
aerodynamic characteristics for delte wing of aspect ratic 2. It cen
be seen from the figures thet fcr a fixed angle of attack, the lift

coefficient and the induced drag increases as the smount of the
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leading-edge suction lost increases. These trends are similar to the
ones shown by Henderson (ref. 1). For these cases the lift is found to
be highly nonlinear with angle of attack. On the other hand, a definite
trend in the variation of pitching moment coefficient is not seen.

At present, the theoretical prediction of the phenomena of partial
leading-edge vortex separation is not possible. The extent of the
separation has been known to depend on the leading-edge geometry, the
Reynolds number and the wing sweep angle (ref. 1). When the degree of
partial separation can be predicted, the present method can be used to

calculate the corresponding aerodynamic characteristics.



4. Conclusions and Recommendsticons

A theoretical methcd has been developed for predicting the
serodynamic characteristics of low aspect-ratic wings with paertial
leading-edge separaticn. The present method has been shown tc work
satisfactcrily for cases with complete leading-edge vertex separetion,
wiiere the leading-edge suction is zero. Some preliminary theoretical results for
cases with rartiel leading-edge vortex separation appear tc te
reasoneble. The rethed hac en advantage over all previous vortex
iattice methods ir that the leading-edge boundary cendition cear te
exactly satisfied. It is not restricted to incompressible flcw. At
the present time it is restricted to planforms with pcinted wing tips
only. The present method can be externded tc handle erbitrary p.anforms
at high angles of eattack, as long es the vortex bursting dces not
occur,

The reccmmended topics of further research or this methcd are:

e. Extend tre methcd to include the wing-tir vortices.

L. Search for a better iteration scheme for faster cornvergence

and lock fer a better convergence criteria.

¢. Modify the method for thick wings.

d. The method can easily be extended toc complex planforms in
which the inboard portion has separated ficw and the
outbcard hes attached flow.

e. The method shouldbe checked for some more cases with partial
leading-edge separaticn.

19
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The computer program coding should be made more

efficient.
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€. Appendices
6.1 Appendix A: FEvaluation of Induced Velocity Due‘to a Line Vortex-

Segment
In the linearized compressible flow the velocity field induced by

a line vortex segment of strength T (figure 12) is given by (ref. 31),

. (-;» -+ e
. 82T . Rl - R) xad ]
V(R) = J.‘ J - (;‘ —‘,‘
w L RS
g
where
- > > -+
B = Jl - @, R=xi+yj + 2k
-> -+ -+ ->
R2 =81+ 1nj+zk
- -+ -+ -
R' = xi + ByJ + Bzk
- > > -
Hi = E£i + Bnj + BLk
l/2
Ry = 1602 + B2(ny)? + 82(1-2)2)
- Iy - #
£
> - > >
The substitution R, - R = a + T, reduces equation (A.1) to,

2

Lo



L3

|

£

3
o4

x ¥ {— 2B
(B - LA C)C

"
51
o4

2(2 A+ B) -2 —_—
TEomGaseo T 42

>
where A = |£’|2, B=2a'+2%" and C= Ig‘lz. Further, it can be

shown that (ref. 31),

B2 _WAC = -b|ar x §)° (A.3)
A+ B=2D" & (A.L)
F+5+0=[]° (A.5)

where

w4

o4
]
®

a' = (% - 21 + 8y, - y)3 + B(z; - z2)k
ORIGINAL PAGE 8
OF POOR QUALITY




LL
-+ -+ -+
b' = (X2 - x}i + 8(y2 -y} o+ B(z2 - 2z)k
L = (x2 - xl)g + B(y2 - yl)j + B(z, - zl)k’

On rearranging, equation (A.2) becomes

> &> e > >y *,
V(R) = £ +“12{3 -2 .1
2" x 215 fer] e



6.2 Appendix B: Derivation of Expressions for Pressure Distribution

Consider two adjoining sets of spanwise strips of bound elements
(Sketch B.1). Along the common edge, there are three trailing
vortices: one due to right set of bound elements, one due to the
left set of bound elements and the other due to the leading-edge vortex
system. The force acting on the chordwise element of length Ax of

the leading-edge vortex system is, by the Kutta-Joukowski theorem,

P, - pVZT v, B (B.1)

Leading-edge vortex
element

Leading-€eage

ith Bound
element -\\\‘ ' \\\\\\\\W
|| _%x\
HF T
Jjth l (J+1)th
strip | strip
y |
’ ORIGINAL PAGE 15
Sketch B.l OF POOR QU

45
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where p 1is the fluid density, Vm the free stream velocity, PJ
the strength of jth leading-edge vortex element and \ the sidewash
at point i. It follows that the force acting at ith point per unit

dynanic pressure and length is,

FLi
q_Ax = 2I':jvi (B.2)

where q = % DV2 the dynamic pressure. A similar expression for the

w?

force per unit dynamic pressure and lengtlh can be written for the

outside leg of the jth strip as,

where Y 1is the bound vortex density xg the leading-edge
x-cocrdinate of the trailing-leg under consideration. The
transformation,

c

+ =% {1 - Cos 6) (B.4)

X = X,
£ 2

reduces equaticn (B.3) to the form,

Py 6,
qﬂl =-vicjfo Y Sin 6 d6
R
mTe,v, | i-1 Y. Sin 6,
;_——ﬁal-i I v, Sin 8 + =1 (B.5)

k=1 | R



W7

where ¢ is the local chord, N the number of bound elements in

J

chordwise direction and 6, = ngiﬁ—ll T. The integral has been

reduced to a finite sum through the regular trapezoidal rule.

Similarly, for the left leg of (j+l1)th strip,

F
N, mTe,v, |i-1 ¥. Sin 0,

(-—A; = ——J_w | L vy, Sin 8 + -3 — (B.6)
L : k=1 L

Therefore, the force per unit dynamic pressure and per unit length at

the ith point is given by the sum of equations (B.2), (B.S) and (B.6).

r FLi (FN1> FNi
qAx:qAx+qAxR EEL (8.7)

Equation (3.7) is evaluated a% all endpoints of wing bourd

elements and linear interpolation is performed to ottain the force
acting at the control station which is inside the vortex strip. Let
it be denoted by Hj . for ith bound element of Jth strip. Then,

y 4+ .

the contribution to differential pressure coefficient, ACP, due to the

chordwise vortices is,

H, .
1
(Acp ) - gt (.8)
i) o J

where Qy, is the width of jth spanwise strip.
Contribution to ACp due to bound elements is calculated in the

following manner. The normal force per unit length acting at ith
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bound element of jth strip (Sketch B.2) is,

2 by
Fp, = PV (ugYy Cos ¥y = vyy; Sinvy) omge
j’l 1
or
FBj . = 2q(ui - v, tan wi)Yiij (B.9)

where Yi is the bound vortex density, ui and vi the x and vy
components of the velocity, wi the sweep angle of the bound elements
and ij the width of the jth strip. It follows that the ACP due
to the ith bound element is given by dividing equatiom (B.9) by

(qﬂyj);

=/~/w -— - t Y \‘ ﬁ.. \'
AC 2, v, tan vy (B.10)

&C = (4C + [ AC (B.11)

Up to this point ACp has beern calculated at the regular wing
vortex locations. The contribution from the leading-edge vortex
element on the planform near the leading-edge (EF in figure 11) has
yet to be considered. This is done in two steps; 1. Extrapolate AC
due to the wing vortex system tc obtain the ACP at the location of
the leading-edge vortex element :F; and 2. Subtract ACp nauced oy

the leading-edge vortex element.



k9

BRound element

Sketch B.

To obtein ACp at any chordwise
Fourier-analyzed. The factor, Sin 6,
known square root singularity of ACP

edges. Therefore, let

AC Sin 6 =8 +
P (o)

where,
a ==/" Ac_ sin 6 a6
o] m o P
.
= T I AC  Sin ek
k=1 Pk

location, ACp sir. £ will te
is included to eliminate the

at the leading and trailing

I a, Cos 8 (B.12)
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o
n
3o

ST AC_ Sin © Cos 6 d6
o °p

N

-2
== L AC_ Sin 8 Ccs 26
o %, k K
6, = 13555—3l-n, k = 1,2,--mam I

N - Number of chordwise lines

The integrals for Fourier coefficients are reduced to finite sumrs
through the mid-point trapezoidal rule. Equation (B.12) can now be
used to calculate ACp at the location of the leading-edge vortex
element EF, which is located at 6 = 7/2(N + 1). 7o achieve-the
secornd step mentioned above, the constant vorticity of the leading-
edge vortex element is first converted tc vortex dersity. The

concentrated vorticity is related to vortex dersity by, -
I'=/ vy dax (B.13)
On using equation (B.4) in the above equation,

c,
T, = 51 / y sin 6 d6 (B.1L)
Assuming that the concentrated vorticity due to leading-edge vortex

syster is distributed near the leading-edge co.y and using the mid~point

trapezoidal rule, the equation (B.1L) reduces to:
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e
Iy =sms1y Y 8in &
or
. 2(n+1
Yy =g ) Sin 6, rj (B.15)

vhere 61 = m/2 (K + 1). Therefore, the decrease in ACp value at the

leading-edge vortex element is given by using equation {B.10) as,

(Acp)decrease S- oy W)Ee Yj (2.16)
where the subscript fe means that the variables u, v and y are
evaluated at the leading-edge vortex element. Note that this decrease
in ACP value near the leading-edge from the usual ACp distribution
is & result of the leading-edge Kutta condition. Hence, the equations
(B.12) and (B.1lL) can be used to calculate the actual ACP at the

location of the leading-edge vortex elements.
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